ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОВАНАДИЙ

Методы определения фосфора

Ferrovanadium.

Methods for determination of phosphorus

ГОСТ 13217.5—90

(CT C9B 1215-89)

OKCTY 0809

Срок действия с 01.07.91

до 01.07.2001

Настоящий стандарт устанавливает фотометрические методы определения фосфора в феррованадии при массовой доле его от $0.04~\rm дo~0.24\%$ на основе желтого фосфорнованадиевомолибденового комплекса и от $0.01~\rm дo~0.24\%$ на основе синего фосфорномолибденового комплекса.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 27349.

1.2. Лабораторная проба должна быть приготовлена в виде порошка с максимальным размером частиц 0,16 мм по ГОСТ 26201.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД НА ОСНОВЕ ЖЕЛТОГО ФОСФОРНОВАНАДИЕВОМОЛИБДЕНОВОГО КОМПЛЕКСА

2.1. Сущность метода

Метод основан на образовании в азотнокислой среде фосфорнованадиевомолибденового комплексного соединения, окрашенного в желтый цвет, и измерении оптической плотности раствора.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота азотная по ГОСТ 4461 и растворы 1:1 и 1:50.

Кислота фтористоводородная по ГОСТ 10484.

Калий углекислый — натрий углекислый по ГОСТ 4332. Аммоний молибденовокислый по ГОСТ 3765, раствор 100 г/дм³.

Аммоний молибденовокислый по ГОСТ 3765, раствор 100 г/дм³. Раствор хранят в посуде из полиэтилена. В случае необходимос-

Издание официальное

Перепечатка воспрещена

ти реактив перекристаллизовывают: 250 г молибденовокислого аммония растворяют в 400 см³ воды при нагревании до температуры 80°С. Раствор фильтруют через плотный фильтр, охлаждают, приливают 300 см³ этилового спирта, перемешивают и через 1 ч осадок под вакуумом отфильтровывают на фильтр средней плотности, помещенный в воронку Бюхнера. Осадок промывают 2—3 раза этиловым спиртом порциями по 30 см³ и высушивают на воздуче.

Спирт этиловый ректификованный по ГОСТ 5962 или по ГОСТ

18300.

Аммоний ванадневокислый мета по ГОСТ 9336, раствор 3 г/дм³: 1,5 г аммония ванадиевокислого растворяют в 250 см³ воды при температуре $50-60\,^{\circ}$ С и охлаждают. Добавляют 40 см³ раствора азотной кислоты 1:1 и раствор разбавляют водой до объема $500\,^{\circ}$ см³.

Железо (III) азотнокислое 9-водное по ГОСТ 4111: 180 г азотнокислого железа растворяют в 500 см³ воды с добавлением 5 см³ азотной кислоты, переносят в мерную колбу вместимостью $1 \, \text{дм}^3$, доливают до метки водой и перемешивают.

1 см³ раствора содержит примерно 0,025 г железа.

Калий фосфорнокислый однозамещенный по ГОСТ 4198.

Стандартные растворы фосфора

Раствор А: 0,4394 г фосфорнокислого однозамещенного калия, предварительно высушенного при температуре 105°С и охлажденного в эксикаторе, растворяют в мерной колбе вместимостью 1 дм³ примерно в 200 см³ воды. Раствор доливают до метки водой и перемешивают Хранят раствор в полиэтиленовой посуде.

Массовая концентрация фосфора в растворе А равна

 $0,0001 \text{ r/cm}^3$.

Раствор Б: 20,0 см³ стандартного раствора А помещают в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Массовая концентрация фосфора в растворе Б равна

0,00002 г/см3; раствор готовят в день применения.

2.3. Проведение анализа

2.3.1. Навеску пробы массой 0,5 г помещают в стакан вместимостью 200 см³, осторожно приливают 10 см³ азотной кислоты и растворяют при слабом нагревании. Затем раствор выпаривают до получения влажных солей, приливают 10 см³ азотной кислоты и повторяют выпаривание раствора до влажных солей. Приливают 20 см³ азотной кислоты, 30 см³ воды и растворяют соли при нагревании.

Горячий раствор фильтруют через фильтр средней плотности, содержащий небольшое количество беззольной фильтробумажной массы, и промывают 5—6 раз горячим раствором азотной кислоты

1:50.

Фильтр с осадком кремниевой кислоты помещают в платиновый тигель, высушивают, озоляют и прокаливают при температуре 700—800 °C до полного выгорания углерода. К осадку прибавляют 2—3 капли азотной кислоты, 2—3 см³ фтористоводородной кислоты и выпаривают досуха.

Остаток прокаливают в течение 5—10 мин при температуре 700—800°С. После охлаждения прибавляют 1 г углекислого калия-натрия и сплавляют в течение 10 мин при температуре 800—850°С.

Плав выщелачивают в 50—60 см³ горячей воды, тигель обмывают водой и удаляют. Раствор кипятят 5 мин, после чего фильтруют. Фильтр промывают 5—6 раз горячей водой и фильтрат присоединяют к основному раствору. Объединенный раствор выпаривают до объема 60—80 см³, охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

В две мерные колбы вместимостью по 50 см³ помещают по 20,0 см³ раствора пробы. Затем в одну из колб помещают 2,0 см³ раствора молибденовокислого аммония и 2,0 см³ раствора ванадиевокислого аммония, а в другую — 2,0 см³ раствора ванадиевокислого аммония. Раствор в колбах доливают до метки водой и перемешивают.

Раствор второй мерной колбы, не содержащий раствор молибденовокислого аммония, применяют в качестве раствора сравнения.

Через 15—20 мин измеряют оптическую плотность раствора на спектрофотометре при длине волны 453 нм или фотоэлектроколориметре в области светопропускания от 430 до 460 нм.

2.3.2. Раствор контрольного опыта готовят согласно п. 2.3.1 с

добавлением 5 см³ раствора азотнокислого железа.

Массу фосфора находят по градуировочному графику после вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы.

2.3.3. Для построения градуировочного графика в шесть мерных колб вместимостью по 50 см³ вводят 2,0; 4,0; 6,0; 8,0; 10,0 и 12,0 см³ стандартного раствора Б, что соответствует 0,00004; 0,00008; 0,00012; 0,00016; 0,00020 и 0,00024 г фосфора.

Во все колбы прибавляют по 1,0 см³ раствора азотнокислого железа, по 8 см³ раствора азотной кислоты 1:1 и перемешивают. Затем добавляют по 2,0 см³ раствора молибденовокислого аммония и 2,0 см³ раствора ванадиевокислого аммония, доливают до метки водой и перемешивают.

Через 15—20 мин измеряют оптическую плотность стандартных растворов на спектрофотометре при длине волны 453 нм или фотоэлектроколориметре в области светопропускания от 430 до 460 нм. Раствором сравнения служит раствор, не содержащий стандарт-

ного раствора фосфора.

По полученным значениям оптических плотностей и соответствующим им массам фосфора строят градуировочный график.

2.4. Обработка результатов

2.4.1. Массовую долю фосфора (X) в процентах вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100,\tag{1}$$

где m_1 — масса фосфора, найденная по градуировочному графику, г;

m — масса навески, соответствующая аликвотной части раствора пробы, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли фосфора приведены в табл. 1.

				Табл	лица 1
		Допускаемые расхождения, %			
Массовая доля фосфора, %	Погрешность результатов анализа, %	двух средних результатов анализа, выполненных в различных условиях	двух па- раллель- ных оп- ределе- ний	трех па- раллель- ных оп ределе- ний	результатсв анализа стандартно- го образка от аттесто- ванного значения
От 0,01 до 0,02 включ. Св. 0,02 » 0,05 » » 0,05 » 0,10 » » 0,10 » 0,24 »	0,003 0,006 0,007 0,010	0,004 0,007 0,009 0,012	0,003 0,006 0,007 0,010	0,004 0,007 0,009 0,013	0,002 0,004 0,005 0,006

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД НА ОСНОВЕ СИНЕГО ФОСФОРНОМОЛИБДЕНОВОГО КОМПЛЕКСА

3.1. Сущность метода

Метод основан на образовании фосфорномолибденовой гетерополикислоты и последующем восстановлении ее в хлорносернокислой среде аскорбиновой кислотой в присутствии сурьмяновиниокислого калия до комплексного соединения, окрашенного в синий цвет, и измерении оптической плотности раствора.

От сопутствующих элементов фосфор отделяют соосаждением на гидроксиде бериллия при рН 8—10.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Кислота соляная по ГОСТ 3118 и раствор 1:1.

Кислота хлорная плотностью 1,5 г/см3.

Кислота серная по ГОСТ 4204.

Аммоний бромистый по ГОСТ 19275 или кислота бромистоводородная по ГОСТ 2062.

Аммиак водный по ГОСТ 3760.

Натрия гидроокись по ГОСТ 4328, раствор 0,2 г/дм³.

Соль динатриевая этилендиамин— N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652, раствор 100 г/дм³.

Бериллия сульфат 4-водный, раствор: 19,7 г сульфата бериллия растворяют в 100 см³ воды и приливают 9 см³ серной кислоты. После охлаждения раствор разбавляют до 1 дм³ водой и перемешивают.

Кислота аскорбиновая свежеприготовленный раствор 20 г/дм³. Феноловый красный, раствор 1 г/дм³: 0,1 г фенолового красного растворяют в 50 см³ воды с добавлением 6,0 см³ раствора гидроокиси натрия и разбавляют водой до объема 100 см³.

Калий виннокислый кислый по ГОСТ 3654.

Сурьмы (III) окись.

Калий сурьмяновиннокислый, раствор 3 г/дм³.

При отсутствии реактива его готовят: 28,2 г виннокислого кислого калия растворяют при кипячении в 600 см³ воды и добавляют небольшими порциями 14.6 г окиси сурьмы.

При необходимости раствор фильтруют, охлаждают до температуры 0—5°С и выдерживают при этой температуре в течение 2—3 ч. Полученные кристаллы отфильтровывают на плотный стеклянный фильтр и высушивают при температуре 100°С.

Аммоний молибденовокислый по ГОСТ 3765. При необходимости реактив перекристаллизовывают, как указано в п. 2.2.

Калий фосфорнокислый однозамещенный по ГОСТ 4198.

Реактивная смесь: 1,74 г молибденовокислого аммония растворяют в 100 см³ воды и приливают 20 см³ серной кислоты. Раствор охлаждают, разбавляют до объема 250 см³ водой и перемешивают.

Промывная жидкость: к 500 см³ воды прибавляют 30 см³ раствора трилона Б, 15 см³ аммиака и разбавляют водой до объема 600 см³.

о см[.]. Железо металлическое.

Стандартные растворы фосфора по п. 2.2.

3.3. Проведение анализа

3.3.1. Навеску пробы, отобранную согласно табл. 2, помещают

Таблица 2

Массовая доля фосфора, %	Масса навески пробы, г		
От 0,01 до 0,03 включ.	1,0		
Св. 0,03 » 0,12 »	0,5		
» 0,12 » 0,24 »	0,25		

в платиновую или стеклоуглеродистую чашку, приливают 15 см³ азотной кислоты, 5 см³ фтористоводородной кислоты, 15 см³ хлорной кислоты, 1 г бромистого аммония или 3—5 см³ бромистоводородной кислоты и нагревают до полного растворения навески. Раствор выпаривают до выделения паров хлорной кислоты или досуха и охлаждают. Приливают 15 см³ соляной кислоты, 40 см³ воды и растворяют соли при нагревании.

Раствор переносят в колбу вместимостью 250 см³. После охлаждения прибавляют 60 см³ раствора трилона Б, 10 см³ раствора сульфата бериллия, нейтрализуют аммиаком до темно-красной окраски раствора и дополнительно добавляют еще 5 см³ аммиака. При проведении контрольного опыта изменение рН среды следует контролировать по индикатору феноловому красному. Раствор на-

гревают до кипения и кипятят в течение 2-3 мин.

Раствор охлаждают в проточной воде до температуры 15—18°С. Отфильтровывают осадок на фильтр средней плотности и промывают колбу и осадок 5—6 раз промывной жидкостью. Растворяют осадок в колбе, в которой проводилось осаждение. Для этого добавляют 20 см³ горячего раствора соляной кислоты, приливая его порциями по 10 см³. Фильтр промывают 5—6 раз горячей водой и отбрасывают.

Фильтрат охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

В стакан вместимостью 100 см³ отбирают аликвотную часть раствора, равную 10,0 см³, приливают 1 см³ хлорной кислоты, нагревают до выделения паров хлорной кислоты и охлаждают. Приливают 50 см³ воды, 5,0 см³ реактивной смеси, 5,0 см³ раствора аскорбиновой кислоты и 1,0 см³ раствора сурьмяновиннокислого калия

Через 15 мин раствор переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 830 нм или на фотоэлектроколориметре в области светопропускания от 680 до 750 нм или от 830 до 920 нм.

Раствором сравнения служит вода.

Массу фосфора находят по градуировочному графику после вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы.

3.3.2. Для построения градуировочного графика в шесть платиновых или стеклоуглеродистых чашек из семи отбирают 1,0; 2,0; 3,0; 4,0; 5,0 и 6,0 см³ стандартного раствора А, что соответствует 0,0001; 0,0002; 0,0003; 0,0004; 0,0005 и 0,0006 г фосфора. Во все чашки прибавляют по 0,25 г железа, по 15 см³ азотной кислоты, по 5 см³ фтористоводородной кислоты, 15 см³ хлорной кислоты и далее поступают, как указано в п. 3.3.1.

Раствором сравнения служит раствор, не содержащий стандартного раствора фосфора.

По полученным значениям оптических плотностей и соответствующим им массам фосфора строят градуировочный график.

3.4. Обработка результатов 3.4.1. Массовую долю фосфора (X_1) в процентах вычисляют по формуле

$$X_1 = -\frac{m_1}{m} \cdot 100, \tag{2}$$

где m_1 — масса фосфора, найденная по градуировочому графику, г;

т - масса навески пробы, г.

3.4.2. Нормы точности и нормативы контроля точности определения массовой доли фосфора приведены в табл. 1.

информационные данные

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. Г. Мизин, Т. А. Перфильева, С. И. Ахманаев, Л. М. Клейнер, Г. И. Гусева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 04.05.90 № 1095
- 3. B3AMEH FOCT 13217.5-79
- 4. Стандарт полностью соответствует СТ СЭВ 1215-89
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

⊙бозначение НТД, на который дан а ес ылка	Номер пункта
FOCT 2062—77 FOCT 3118—77 FOCT 3118—77 FOCT 3654—79 FOCT 3760—79 FOCT 3765—78 FOCT 4111—74 FOCT 4198—75 FOCT 4204—77 FOCT 4328—77 FOCT 4332—76 FOCT 4461—77 FOCT 5962—67 FOCT 10484—78 FOCT 10652—73 FOCT 18300—87 FOCT 18201—84 FOCT 27349—87	3.2 3.2 3.2 3.2 2.2, 3.2 2.2, 3.2 3.2 3.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 2.3, 3.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 2.1, 3.2